Reading: Fisher.TableM Fisher_Horiz (Problem 1)

Model: Source Text

Problem Type: Calculate an empirical Table M using horizontal slices.

Given Experience for a group of risks with expected annual aggregate loss of \$100,000

Risk	Actual annual aggregate loss				
1	20,000				
2	50,000				
3	60,000				
4	70,000				
5	80,000				
6	80,000				
7	90,000				
8	100,000				
9	150,000				
10	300,000				

Find Construct a Table M using the horizontal slicing method.

Solution

- 1.) Notice the risks in the group are already ordered by increasing actual loss. If your risks aren't ordered, do that first.
- 2.) Compute the entry ratio, r = [actual loss] / [expected loss], for each risk. Note they all have the same expected loss of \$100,000.

Risk	Actual Loss	Entry Ratio, r	
1	20000	0.2	
2	50000	0.5	
3	60000	0.6	
4	70000	0.7	
5	80000	0.8	
6	80000	0.8	
7	90000	0.9	
8	100000	1.0	
9	150000	1.5	
10	300000	3.0	

3.) [Optional] Draw a Lee diagram.

- 4.) For each distinct entry ratio, plus the 0 entry ratio, fill out the table below as follows:
- a.) # Risks: This is the number of risks with entry ratio r
- b.) # Risks over r: This is the number of risks with entry ratios strictly greater than r
- c.) % Risks over r: This is b.) / [Total # of risks]
- d.) Difference in r: This is the r value from the next row minus the r value from the current row. It is zero for the last row.
- e.) Insurance charge: Start at the last row and work upwards. The last row always has zero insurance charge.
 - For row k, multiply the kth row difference in r by the kth row % risks over r then add this to the insurance charge for row k+1.
- f.) Compute the insurance savings using the formula: $\psi(r) = \phi(r) + r 1$

Entry Ratio, r	# Risks	# Risks over r	% Risks over r	Difference in r	ф(r)	φ(r)
0	0	10	100%	0.2	1.00	0.00
0.2	1	9	90%	0.3	0.80	0.00
0.5	1	8	80%	0.1	0.53	0.03
0.6	1	7	70%	0.1	0.45	0.05
0.7	1	6	60%	0.1	0.38	0.08
0.8	2	4	40%	0.1	0.32	0.12
0.9	1	3	30%	0.1	0.28	0.18
1.0	1	2	20%	0.5	0.25	0.25
1.5	1	1	10%	1.5	0.15	0.65
3.0	1	0	0%	0	0	2.00

Notice the horizontal method really only lends itself to calculating at entry ratios corresponding to known losses.

To calculate an "in-between" entry ratio insurance charge, form a trapezoid and add that area instead.

Fisher points out in practice there are usually sufficient losses to construct a Table M with intervals of 0.01 between rows and that linear interpolation is usually accurate enough.